Estimating hidden semi-Markov chains from discrete sequences

نویسنده

  • Yann GUÉDON
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A generalization of Profile Hidden Markov Model (PHMM) using one-by-one dependency between sequences

The Profile Hidden Markov Model (PHMM) can be poor at capturing dependency between observations because of the statistical assumptions it makes. To overcome this limitation, the dependency between residues in a multiple sequence alignment (MSA) which is the representative of a PHMM can be combined with the PHMM. Based on the fact that sequences appearing in the final MSA are written based on th...

متن کامل

Estimating Latent Attentional States Based on Simultaneous Binary and Continuous Behavioral Measures

Cognition is a complex and dynamic process. It is an essential goal to estimate latent attentional states based on behavioral measures in many sequences of behavioral tasks. Here, we propose a probabilistic modeling and inference framework for estimating the attentional state using simultaneous binary and continuous behavioral measures. The proposed model extends the standard hidden Markov mode...

متن کامل

Exploring the state sequence space for hidden Markov and semi-Markov chains

The knowledge of the state sequences that explain a given observed sequence for a known hidden Markovian model is the basis of various methods that may be divided into three categories: (i) enumeration of state sequences; (ii) summary of the possible state sequences in state profiles; (iii) computation of a global measure of the state sequence uncertainty. Concerning the first category, the gen...

متن کامل

Relative Entropy Rate between a Markov Chain and Its Corresponding Hidden Markov Chain

 In this paper we study the relative entropy rate between a homogeneous Markov chain and a hidden Markov chain defined by observing the output of a discrete stochastic channel whose input is the finite state space homogeneous stationary Markov chain. For this purpose, we obtain the relative entropy between two finite subsequences of above mentioned chains with the help of the definition of...

متن کامل

Unsupervised segmentation of new semi-Markov chains hidden with long dependence noise

The hidden Markov chain (HMC) model is a couple of random sequences (X,Y), in which X is an unobservable Markov chain, and Y is its observable ‘‘noisy version’’. The chain X is a Markov one and the components of Y are independent conditionally on X. Such a model can be extended in two directions: (i) X is a semi-Markov chain and (ii) the distribution of Y conditionally on X is a ‘‘long dependen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2006